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Effect of the anisotropy of the cells on the topological properties
of two- and three-dimensional froths
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We study the effect of the anisotropy of the cells on the topological properties of monodisperse two- and
three-dimensional~3D! froths. These froths are built by Voronoı¨ tessellation of actual assemblies of monosize
disks ~2D! and of many numerical packings of monosize disks~2D! and spheres~3D!. We show that some
topological properties of these froths can be simply related to the anisotropy of the cells.
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The physics of disordered froths is of great interest
cause of their importance in metallurgy~grain aggregates!,
biology ~cells!, geology~fracture patterns!, etc. Such struc-
tures can be represented in a simplified way by convex p
hedra filling space@three-dimensional~3D! froths# or by con-
vex polygons covering the plane~2D froths!, and it is well
known that the statistical properties of the cells verify so
‘‘universal’’ empirical laws, namely Aboav’s, Lewis’s, o
Lemaitre’s laws@1–3#.

More recently, it appeared that unconsolidated granu
media may be modeled in a first step by packings of eq
hard spheres@4,5# or disks@3# and that the local environmen
is well described with the help of their Voronoi tessellatio
It has been shown that these artificial froths behave, fro
topological and a metric point of view, like natural froths@5#.
These assemblies, therefore, may be used as investig
tools for more general purposes. In this paper, we pre
results on the correlation between the anisotropy of the c
and the topological properties of monodisperse 2D and
froths issued from monosize packings of disks and sphe

Packings of spheres are built numerically using five al
rithms that have already been described in previous pap
as mentioned later. Here we just recall briefly their princip
in three dimensions. They can be divided into three clas

~i! Sequential algorithms. For these algorithms, the p
ticles are placed one at a time. The simplest algorithm of
class is the random sequential adsorption~RSA! @6,7#.
Spheres are deposited at random positions; if the last de
ited particle overlaps any of those already present, it is
moved, otherwise it is permanently fixed. We also use
modified random sequential adsorption algorithm@8#
~MRSA!. This algorithm, based on the RSA, allows particl
overlapping one or several particles already present to m
small displacements to eliminate these overlaps.

The next two sequential algorithms build packings un
the influence of a directional force such as the gravity. T
first one, the Visscher and Bolsterli algorithm@9#, consists in
launching randomly particles at the top of the box that c
tains the packing. A particle is definitively deposited when
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is in a stable position, i.e., in contact with three partic
already placed. The second one is Powell’s algorithm@10#,
which is very similar to the previous one. It consists in ad
ing spheres, at the lowest position, in contact with three r
domly chosen spheres already placed.

~ii ! Cooperative algorithms. We use the Jullien algorith
@4#, which is based on the Jodrey-Tory construction@11#. It
consists of slowly reducing overlaps of packing of growi
soft spheres.

~iii ! Dynamic algorithms. The last algorithm we use is
classical hard-sphere molecular-dynamics algorithm~event-
driven! @12#.

According to these algorithms, we can build packings
any packing fraction,C, between 0 and 0.74~fcc packing
fraction!. The packings are made of approximately 16 0
spheres.

For the packings of disks, we use 2D versions of t
algorithms mentioned above. The packings of disks can t
have any packing fraction between 0 and 0.907~triangular
lattice!. The numerical packings contain approximate
10 000 disks. We also use actual packings of disks built
an air table@13#. Such packings are then studied by nume
cal image analysis. The statistics are made on approxima
3000 disks.

Now, we build our froths and for that purpose we foc
on the Voronoı¨ tessellation of packings of monosize dis
and of packings of monosize spheres. We recall tha
Voronoı̈ cell is defined as the ensemble of points closer t
given sphere~or disk! than to any other and is characterist
of the local environment around this particle. We have re
resented in Fig. 1 an example of a Voronoı¨ tessellation of a
packing of disks.

In 2D, the topological properties of a cell are linked to
number of edgesn. Due to Euler’s relation, the mean valu
of edges per cell,̂n&, is a constant equal to 6. Thus, th
topological energy of a 2D froth can be defined as the v
ance ofn: m2(n)5^n2&2^n&2. Metric characteristics of such
2D froths are the mean area^a&, the mean perimeter of the
cells ^ l &, and any higher moments of these quantities.

For 3D froths, things are a little more complicated. As t
mean number of faceŝf & is not a constant@5#, we have to
©2001 The American Physical Society01-1
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consider both this mean number and the variance of,
m2( f )5^ f 2&2^ f &2. As for 2D froths, we can compute th
mean volumê V&, area^A&, and perimeter̂L& of the cells
and any higher moment of these quantities.

We have plotted in Fig. 2 the evolution of^ f & versus the
packing fraction for the different algorithms used. We o
serve that this quantity depends not only on the packing f
tion but also on the algorithm used, i.e., on the history of
packing. So the packing fraction is clearly not a good qu
tity in order to describe the state of a froth, and we now lo
for a better parameter. We can turn to the relation betw
^ f & and the anisotropy of the cells. This can be done qu
tatively by looking at Fig. 2. First, we can compare the d
ferent algorithms for a given packing fraction. Second, fo
given algorithm~for which we can modify the packing frac
tion!, we observe a decrease of^ f & when the packing fraction
increases; actually, it may be checked that cells become m
isotropic with this increase.

For example, due to its principle of construction, t
MRSA algorithm provides very distorted cells. Th
Visscher-Bolsterli and Powell algorithms also give anis

FIG. 1. Example of a 2D Voronoı¨ tessellation. Each cell is a
convex polygon. The set of cells fills the plane.

FIG. 2. Evolution of the mean number of faces versus the pa
ing fraction,C, for different algorithms.
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tropic cells since the direction of the gravity is favored. T
last example is the event-driven algorithm: for high packi
fractions (C.0.545), the system crystallizes@12#; the cells
are then more isotropic than those of disordered packing
the same packing fraction. We observe in Fig. 2 that
higher the anisotropy, the higher the value of^ f &. This result
is in agreement with a theory developed by Rivier@14#, who

FIG. 3. Evolution of the mean number of faces~a! and of the
variance of the number of faces~b! versus the sphericity coefficien
Ksph for all the algorithms used.

FIG. 4. Evolution of the variance of the number of edges of
cells versus the coefficientKcirc , for froths generated from 2D disk
packings.
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has shown that fluctuations in the average curvature impa
by each vertex of a cell lead to an increase of^ f &.

In order to describe more quantitatively the anisotropy
the cells, we have computed for each packing a spheri
coefficient of the cells, which we define by

Ksph536p^V2&/^A3&. ~1!

For a sphere, this coefficient is equal to 1. For a con
polyhedron, the more anisotropic the polyhedron, the low
is Ksph. We have reported in Fig. 3~a! the variation of^ f &
versus this coefficient. In agreement with Rivier’s theory a
with our previous qualitative study, we find that the high
the anisotropy, the higher is^ f &. Furthermore, surprisingly, i
seems that all points are positioned on a unique curve.
have also represented, in Fig. 3~b!, the evolution of the vari-
ance off, m2( f ), with the sphericity coefficient, and we fin
once more a unique curve for all the algorithms used.
unlike the packing fraction~see Fig. 2!, the sphericity coef-
ficient seems to be a good parameter in order to describe
3D froths: all the algorithms used give similar results for
given anisotropy.

Then, we checked whether a similar law can be found
2D froths. We first define the 2D equivalent of the spheric
coefficient for 2D froths,

Kcirc54p^a&/^ l 2&. ~2!
.
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We have reported in Fig. 4 the evolution ofm2(n) for all
packings of disks used versus the coefficientKcirc . All the
points seem to be in the same curve. As in 3D, the differ
froths give similar results for a given anisotropy. We c
also notice that this curve is linear except on a very sh
range of packing fraction, where the packings of disks
crystallized (C.0.89) andm2(n)'0.

In conclusion, in this Brief Report we have reported stu
ies on the effect of the anisotropy of cells of disordered
and 3D froths on their topological properties. In order
build our froths, we use the Voronoı¨ tessellation of packings
of monosize particles built by numerical simulation. For t
2D froths, we also use actual packings built on an air tab
For 3D froths, we have shown, in agreement with Rivie
theory, that the mean number of faces^ f & increases when the
anisotropy of the cells increases. A more careful study sho
that this quantity and the variance of the number of fa
m2( f ) seem to depend universally on this anisotropy. A sim
lar result exists in 2D.

It remains to check whether that universality is verified
natural froths such as, for example, polycrystals. The ans
is difficult because it is not easy to measure the mean qu
tities in the expression ofKsph. The next step of this work is
to study the link between the anisotropy of the 3D froths a
the anisotropy of their cuts~see@15# for a preliminary work
on cuts of 3D froths!. We expect to find information on the
3D structure from the cuts.
ev.
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